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RATIONAL ERGODICITY AND A METRIC 
INVARIANT FOR MARKOV SHIFTS 

BY 

J O N  A A R O N S O N  

ABSTRACT 

The concept  of r a t iona l  e rgod ic i ty  is i n t roduced  and  used to cons t ruc t  a met r ic  

invar ian t  for the class of ra t iona l ly  e rgodic  t r ans fo rma t ions  (which inc ludes  all 

e rgodic  M a r k o v  shifts).  

w Introduction 

We study invertible ergodic measure preserving transformations (i.e.m.p.t.s) 

of o'-finite (usually infinite) measure spaces; (the assumption of invertibility, 

made for conciseness, is not essential, except in w 

Rational ergodicity is a ratio limit property. We discuss various ratio limit 

properties of i.e.m.p.t.s in w before defining: "weak rational ergodicity" and 

"rational ergodicity", and the "return sequence" and "asymptotic type" as- 

sociated with a rationally ergodic transformation. 

In w we define some metric relationships between m.p.t.s. Asymptotic type is 
a metric invariant for rationally ergodic transformations, which, when restricted 

to ergodic Markov shifts (shown to be rationally ergodic in w refines the metric 

invariants of Rudolfer ([23}). 

We combine the concepts of return sequence and entropy (introduced by 

Krengel in [18]) to construct, in w a still finer metric invariant (normalised 

asymptotic type) for rationally ergodic transformations. We construct an un- 

countable collection of ergodic Markov shifts (preserving infinite measure), with 

the same asymptotic type, but different normalised asymptotic types. When 

restricted to e.m.p.t.s of finite measure spaces: normalised asymptotic type boils 

down to Kolmogorov-Sinai entropy (cf. [3]). 

In w we study the metric theory of random walks on the integers, in terms of 

their jump distributions. We construct an uncountable collection of dissimilar, 

ergodic random walks. This collection could be separated by the invariants of 
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Rudolfer. We also prove that the variances of the jump distributions of two 

similar (see w ergodic random walks are simultaneously finite or infinite, for 

this we need the concept of asymptotic type. 

We examine in w other ratio limit properties of i.e.m.p.t.s, which, although 

not relevant to the development of the results of earlier sections, may be of 

interest in themselves. 

This work was done at the Hebrew University of Jerusalem under the 

supervision of Prof. Benjamin Weiss, to whom the author is most grateful for 

helpful conversations, excellent supervision and much encouragement. 

w Rational ergodicity and other ratio l imit properties  

Let (X, ~,/z, T) be an i.e.m.p.t, with/z (X) =< oo. Let ,~ = {A ~ ~ : 0 </z (A) < 

~} and, for A E ~ ,  let: ~ N A = { B E ~ : B C _ A } ,  a , ( A ) = a , ( A , T ) =  

E~=o#(A n T-kA). 
If ~ (X)< oo then the ergodic theorem implies that 

(1.1) ~ /z(B n T-kC) ~ n tz(B)tz(C) =o /z ( X )  as n --~ ~ VB,  C ~ ~. 

This, in turn, implies that 

tx(A N T-kB) 
(1.2) k=o ~ I~(A)tz(B) VA, B, C, D 

tz(C O T-kV) "~| I~(C)tz(D) 
k = 0  

- - a  condition that can at least be stated when tz(X)= ~, even though in this 

case (by the ergodic theorem) 

(1.3) ~ /x(B n T-kC)= o(n) as n---, co. 
k = O  

In fact, as will be proven in w a necessary condition for (1.2) is that tz (X) < 0o. 

Nevertheless, we look for properties with the flavour of (1.2), but which are 

satisfied by some i.e.m.p.t, of an infinite measure space. 

One such property is 

~(A N T-kB) 
(1.4) k=,, ~tz(A)lz(B) VA, B,C, D E ~  

tz(C n T-kD) " ~  tx(C)tz(D) 
k = O  

where ~ is ~-dense in ~. 
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We will see in w that every i.e.m.p.t, of a separable space satisfies (1.4) for 

many different ix-dense subcollections %0 of ~. 

In this section, we will examine the property 

rl  

(1,5) ~ i x (B n T -~C )  ,~(B)~I2C) VB, C ~ n A  
a.  ( A  ) , . . . .  ix ( A 

which will be seen in Proposition 1.1 to imply a stronger version of (1.4). 

It is evident that (1.5) is a property of the set A E o% and, accordingly, we let 

R(T)  denote the collection of sets in ~ satisfying (1.5). 

PROPOSITION 1.1. 

equivalent: 
( i )  A E R(T), 

Let T be an i.e.m.p.t, and let A E ~, then the following are 

( i i )  

(1.6) 

1 ~ ~(Bn T-~C) ,,(B)ix(C) 
a.(A )k=o .-~ ix(A) 2 

VB, C e . ~ A  = CJ ~ n  0 T -~A, 
n = 0  k = 0  

(iii) 

(1.7) 

lim 1 " ~_. a -(A ) k~= ~ ix ( B fq T- k C ) >= ix ( B ) ix ( C ( A ) 2 

VB, CE.~.  

PROOF. (i) # (ii). Let B, C E ,~A and write 

M N 

B =  U B~ (disj), C =  U C, (disj) 
k = 0  I = 0  

where TkBk, T~C~ C_ A. 

Now, Vk, I 

n 

1 s~=o 1 j% ix(TkB~ f'l T '- '+k(T'C,)) a,(A ) ix(B, Q T-'C,)= a,(A ) 

n + l  k 

a.(A ),=~-k IX(TkBk f) T-'(T'C,)) .-~ , IX(B~)IX(G)ix(A )2 

"" TkBk, T'CtC A. 

Hence 

1 '~ 1 " 

o. ~a),% ~ ~ ~ ~-'~-- ~:0~: ,:0~: a. ~a ~ ~ ~ ~B' ~ ~ - '~  

~ ~(B~)g(C)= F(B)I~(C) 
' y Y - ~  ~=o,=o IX(A IX(A 
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(ii) f f  (iii). Let B, C ~ ~. Since T is ergodic, and/~ (A) > 0, U~-o T-"A = X 

(mod /_~) and so: V e > O  ~ B ' , C : ~ 3 ; A  s,t. B'~CB, C'~CC and /~(B',)> 
/ z (B) -  e, ~ ( C : ) >  ~ ( C ) -  e. Hence 

tim ----~I (B N T- 'C)  hm---7-~. , ~ p.(B'~n T-~C',) 
. ~ a . ( A )  ~ >= 

= > v >0. 
/.~ (A) 2 = ~ (A)  

(iii) ~ (i). Let B ~ ~ N A, then 

�9 1 ,t 

h m ~  E u (B  n T-~A)>= F(B)  
. ~  a . (A)  ~=o /z(A) 

and 

i . e .  

(~.8) 

!inaa--~)k~_o # (B  M T-kA)  = 1 - l i m ~  k ~ _ - o . ~  a . (A)  ~ p.((A - B)N T-kA)  

_--< 1 - p . (A - B ) =  # ( B )  
tz(A) /~(A) 

n 

a,(A)k~o ~(B  N T-kA)  , I'~(B) VB ~ ~ N A. ,4| tz(A) 

Now let B, C E ~ N A, then 

�9 1 n ~{B)~ (C)  
h m ~  ~ ~(B n T-*C) > 
,,-.~a,,(A)k~o = ~ ( A )  2 

and 

- -  1 " 

 Z-(-A3 o , (B n v kc) 

- -  1 " 1 " 

= !ima-~)k~_ ~ ~ (B  N T-kA )-~--.~lim-yT~* , a .  (~ ] kE=o tz(B n T - k ( A -  C)) 

= - h m ~  ( B A T  - * ( A - C ) )  by (1.8) 
/x(A) "Z~'z~a.(A)k=o/z 

< e{B)  _ tz(B)l.t(A - C) = Iz(B)lz(C) O.E.D. 
--- p~(A ) t.t(A ) 2 i~(A ) 2 

We note that theorem 3.2 in ['7] (Foguel and Lin), when restricted to e.m.p.t.s, 
is equivalent to 
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(1.9) A E R(T )  iff A satisfies (1.8). 

If A , B  E R(T )  then a double application of (1.7) yields that 

a.(B) , F ( B f  
(1.10) a,(A ) ,-| tz(A ) 2" 

We are now in a position to show that T ergodic does not imply that R (T) # ~ .  

EXAMPLE 1 .2- -an  i.e.m.p.t. T with R ( T )  = QS. 

In [9], Hajian, Ito and Kakutani constructed an i.e.m.p.t. (X, ~,/x, T) together 

with an invertible measurable transformation Q: X ~  X with the properties 

that (i) QT = TO, (ii) p,O = a~  ( a #  1). Now, if A E R(T) ,  then, by the 

invertibility of Q, OA E R ( T )  and 

Ot = 

I~(O(A n T-kA ) 
k = l  

Iz(A N T-~A ) 
k = l  

a . (OA)  F (QA)  2 
= ~ = a 2 by (1.10). a , (A)  ,~| / z ( a )  2 

This contradicts a #  1 and so R(T)  = 0 .  
We will say that T is weakly rationally ergodic (w.r.e.) iff T is ergodic and 

R ( T ) # ~ .  Now, if T is w.r.e, then, by (1.10), there are sequences {a.(T)}7=l 

such that 

(1.11) a , ( A , T )  a.(T)  . _ = ,  tz(A ) 2 VA E R(T).  

We will call any sequence {a.(T)} satisfying (1.10) a return sequence of T 
(return sequence, because a,(A, T) measures the expected number of times 

points of A return to A under T before time n when / z ( A ) =  1). 

We denote by ` i ( T )  the class of sequences {{b,}~=l: b. /a , (T)  ,,~=c for 

some c E (0,~), and some return sequence {a,(T)}}. 

The object ` i ( T )  will be called the asymptotic type of T. We reserve the right 

to abuse our notation in the following way: T will be said to be of asymptotic type 

{f(n)}. if f ( n ) / a . ( T ) ~  c E (0, ~o) for some return sequence {a,(T)}, and this will 

be written: ` i ( T ) =  {f(n)} (e.g. if / z ( X ) < ~  then by (1.1): ` i ( T ) =  {n}). 

The property (1.5) could be viewed as a "weak L' ergodic theorem on A E ,~" 

since by (1.9): A E R(T )  iff 

1 ~--1 o T k 1 a . (A)  /~/A t l ~  ' ~ - - ~  weakly in L'(A) .  
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Analogously, "strong L p ergodic theorems" could be considered. We will 

study these in a future publication. Here, we consider a condition that would be 

implied by a "strong L 2 ergodic theorem on A " :  

1 " )2 

If T is ergodic and there is an A E f f  satisfying (1.12), we will say that T is 

rationally ergodic (r.e.); and the collection of sets A satisfying (1.12) will be 

denoted by B (T). To justify the choice of name we show that rational ergodicity 

is indeed stronger than weak rational ergodicity. 

First, the notion of an induced transformation (Kakutani [12]) is recalled. Let 

T be a conservative m.p.t, and let A E ~. For 

n - 1  

(1.13) x ~ A A T - " A -  U T-kA (where n=>l):  
k = l  

Let TAx = T"x then ([12]) TA: A ~ A and (A, ~ n A, IxA, TA) is a m.p.t., and an 

i.e.m.p.t, if T is an i.e.m.p.t. 

LEMMA 1.3. Let T be an i.e.m.p.t, and let A E ~, then VB, C E ~ n A and 

n>__l 

(1.14) k=0tz(TABNT-kC)-k=0IX(BAT-kC)  <=Ix(A). 

PROOF. We prove the lemma for T -~. Noting that xs(T*x) = 0 VB C_A 

whenever T k x g T k x  for all j > - l ,  we see that for every x E A ,  and n=>l ,  

3k , (x )  such that 

k ( x )  

(1.15) 2 XB(Tkx) = ~, x~(T'~x) for every x E A, B E ~ n A. 
k = 0  I = 0  

Hence for every x E A, B E ~ O A 

k ( x )  

XT~,B(Tkx) = ~ XT~,.(Tkx) 
k = o  I = 0  

k ( x ) + l  

= 2 xs (Tkx)  

k (x)  

= ~ xa(Tkxl+xs(T~'r247 
i = 0  

= 2 xs(Tkx)+xn(T~'~x)*'x)-xB(x) �9 
k ~ O  
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Thus 

(1.16) t 2k=0 Xr~'s(T~x)- k2=0 xs(Tkx)l<-<-I for every B U E N A ,  x U A .  

Integrating (1.16) on C E ~ f) A, we obtain 

(1.17) 1 2k =o Iz(T-kT-a'BNC)- k2=,, I-t(T-kBf3C)I<=g(C) 

< / z ( A )  for B, CEg3 f)A, n >= 1. 

Now, (1.17) and the assumption that T is an i.e.m.p.t, yield 

12 /x(T-a'B f'l TkC) - 2 Ix(B f-1TkC) (1.18) 
I k = 0  k ={1 

=</.t(A) for every B, C E ~ f"l A, n => 1. 

This is (1.14) for T t. O.E.D. 

THEOREM 1.4. Let T be an i.e.m.p.t. If T is r.e. then T is w.r.e. 

PROOF. We prove that B(T)CR(T) .  Let A E B(T), and d', = 

(1/a,(A ))E~=oXA o T k', then 

4'~ E L~(A ) n >- 1 

and 

(1.19) II 4'~ 112 =< M n _-> 1. 

It is a well known property of Hilbert spaces that (1.19) is sufficient for every 

subsequence of {4',} to have a subsequence weakly convergent in U(A) (a 

Hilbert space). 
Now, if 4',k ~ 4' weakly in L2(A), then by (1.14) 4) o TA =4' a.e., and hence, by 

the ergodicity of TA and the fact that fa4',dtz = 1Vn, 4' = 1//z(A) a.e. This 
means that every subsequence of {4',} has a subsequence converging to 1/~ (A) 

in LZ(A)--i.e. 4', ~ 1//z (A) weakly in L2(A) as n ~ ~. In particular 

n 

(1.20) k~=o/.t(BAT_kA) , ~ ( B )  V B E ~ N A .  a,(A) , ~  ~(A) 

The same argument applies to T -~, so, since T is an m.p.t., 

n 

(1.21) a.(A)k~_og(ANr_kB) .-='?(B)tz(A) V B E ~ r ) A .  
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Now choose any C E ~ (3 A and let ~b. = (1/a.(A))Z~=oXc o T k, then [[~b. 112<_- 

II 6. r[~, -<- M, n _--- 1 and an argument  similar to that leading to (1.20) (combined 

with (1.21)) shows that 

O. , t , ( c )  
,~= ~(A)~ weakly in L2(A). 

In particular 

1 " a.(A)k~= ' tx(Bf3T-kC)------~-~ t z (B) tz (C)  VB, C E N f ' ) A .  
, ~ ~ ( A )  2 

Q.E.D.  

Attention will henceforth be confined to rationally ergodic m.p.t.s (r.e.m.p.t.s) 

since the author knows of no w.r.e.m.p.t,  that is not r.e. 

Advantages of r.e. over w.r.e, will become evident in the next section, where 

we will define some metric relations between m.p.t.s, and show that the 

asymptotic type of r.e.m.p.t.s is invariant for all of them. 

w lsomorphisms and other metric relations 

Let (X, ~ ,  ~, T) and (X' ,  ~ ' , / . t ' ,  T ' )  be m.p.t.s. Let 0 < c < ~. We will say that 
r 

~r is a c-map of T onto T' (zr: T , T') iff zr: X - *  X '  is a map (defined ~-a.e.) 

s.t. 7 r - ~  ' _C ~ , / z  o 7r -~ = c/z' and 7rT = T'Tr. If, in addition, 7r is invertible (i.e. 7r 

is one to one where defined and 7r-1~ ' =  ~ ) ,  then we will say that ~r is an 

invertible c-map of T onto T' (Tr: T ~ c ~ T').  (Note that if ~:  T ~ ~ ~ T '  then 

"rr-': T '  'r ~ T.) 

We say that T' is a c-factor of T (T  --L* T ' )  ill there is a c -map  of T onto T' ;  

and that T' is a factor of T (T---~ T') ilt T C~ T, for some c E ( 0 , 2 ) .  

It is necessary to introduce the constant c because the measure spaces are not 

normalised. If /z(X), / z ' ( X ' ) < ~  and T c~ T '  then c = t z ( X ) / ~ ( X ' ) .  When 

/z (X), # ' ( X ' )  = ~, there is no such a priori restriction on the values of c for 

which T--L~ T'.  

We say that Tis similar to T' (T  ~ T') iff T and T '  are both factors of the same 

mp . t .  

All t ransformations preserving finite measures are pairwise similar since any 

two of them are both factors of their Cartesian product. It is comparat ively rare 

that transformations preserving 0c measure are similar. We do not know if 

similarity is an equivalence relation. 

If T---, T '  and T'----~ T then we say that T is weakly isomorphic with T' 

( T =  T').  
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If there is an invertible c-map of T onto T'  for some c E (0, o0) then we say 

that T is isomorphic with T'(T~--~ T'). Clearly 

(2.1) T~--*T'~ T ~ T ' ~  T - - * T ' ~  T -  T'. 

Now let T be an e.m.p.t, and T' be a r.e.m.p.t. Assume 7r: T--L* T', then 

(2.2) 7r-'B(T ') C_ B(T)  and, hence, T is r.e. 

Moreover,  let A E B(T ' ) ;  then 

(2.3) a,(T') ~ a,(A, T') a,( 7r-lA, T_)_ ,1~(Tr-Ia) z 
a,(T) tx,(A )2a,(T)= Clz,(A )Za,(T ) ,-~ Clz,(A )2 = c 

by (1.11), and since 

a.(Tr-'A, T)= ~ tz(Tr-~(A f') T'-kA ))= ca,(A, T'). 
k = l  

Now from (2.3) it follows that 

(2.4) 

and 

( 2 . 5 )  

= 

If T is an e.m.p.t., T' a r.e.m.p.t, and T---~ T' then 

3! cE(O,~)s.t. T--L-~ T '. 

We note, in order to obtain analagous results for T'  w.r.e., we would either 
c 

have to assume that 7r: T~ ~ T' or that T is also w.r.e. 

Moreover,  we do not know if the asymptotic types of similar w.r.e.m.p.t.s 

coincide. 

The rest of this section is devoted to showing that two similar r.e.m.p.t.s do 

have the same asymptotic type. 

The next three results are technical, and show that (for the purpose of 

calculating asymptotic type) two similar r.e.m.p.t.s can be considered as factors 

of one e.m.p.t. 

Let (X, ~, /z ,  T) be an invertible m.p.t. By an ergodic decomposition of T is 

meant a probability space (1), E, P)  and a collection of measures {/z,~},o~, such 

that for every countable ring ~ _C ~: :111~, ~ E s.t. P ( f l~ )  = 1 and 

(2.6) ~ is a measure on (X, ~ )  Vto E fl~, 
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(2.7) 

(2.8) 

and 

(2.9) 

(X, ~,,ix,,  T ) - -deno ted  by T , - - i s  an e.m.p.t. (where 

~ .  is the Ix.-completion of ~) ,  

`CA E ~ :  IX.(A) is a measurable function of to and 

fn Ixo(A )dP(w) = IX(A), 

Ix. (X) > 0 'Ca, ~ ~ .  

We will denote the above ergodic decomposition of T by (fl, X, P,{Ix,}). 

THEOREM 2.1 [22]. If (X, ~, Ix, T) is a m.p.t.; (X, ~, Ix) is a Lebesgue space 
i.e. is generated by a countable ring ~ which separates points (see [21]) and 

Ix (X) = 1 : then there is an ergodic decomposition of T 

(l~,E,P,{ix,})such that ix.(x)= l V w E ~ .  

The following seems to be well known: 

PROPOSITION 2.2. Let (X, ~,  Ix, T) be an m.p.t., IX(X) = 1 and let qg C_ ~ be a 

countably generated, T-invariant or-algebra such that (X, ~, IX, T) is ergodic. If 
(l~, ~, P, {ix,}) is an ergodic decomposition of T s.t. IX.(X) = 1 `coJ, then 31~' C f~ 
s.t. P(fY)= 1 and s.t. 

(2.10) Ix,(C) = IX(C)`Cw Efl ' ,  C E ~. 

LEMMA 2.3. Let (X,~,IX, T) be an invertible m.p.t. (ix(X)~oo) and let 
(X, ~3, Ix) be a Lebesgue space. Let ~ C_ ~ be a o,-finite, countably generated 
T-invariant or-algebra s.t. (X, c~, IX, T) is ergodic then: 

(i) 3 an ergodic decomposition for T. 
(ii) If  (1~,~, P,{IX.}) is an ergodic decomposition for T then 3 c: f ~ ( O ,  oo) 

measurable, lq'C_ f~ s.t. P(IT)= 1 such that 

(2.11) VC e ~, ,o ~ ~': ~ . ( c ) =  c( ,o)g(c) .  

PROOF. (i) is theorem 6.1 of [18]. 
(ii).Choose C E ~ ,  then (I~, X, P, {/z,}) is an ergodic decomposition for 

(C, ~ n C, Ixc, Tc) and c(w) =/.to(C) is a measurable function from f~ into (0, ~). 
Let dP = cdP/tz(C) then (ll, X,P,{(l/c(w))ix,}) is an ergodic composition for 
(C, ~ n C, Ixc, Tc) s.t. Ix,(C)/c(w) = 1 Vw. Hence by Proposition 2.2: 
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tz,o(A )= tz(A ) 
3 f l ' ~ X ,  P ( n ' ) =  1 s.t. c(w) be(C) V A ~ n c ,  w E D '  

(2.12) i.e. /z~(A) = c ( w )  (A) V A E ~ f q C ,  w E ~ ' .  ~(c) ~ 
Now, as C E ~ :  U : = , T " C = X  mod /z and so (2.12) extends under 

T-iteration to ~. 

THEOREM 2.4. Let T~ and T2 be similar r.e.m.p.t.s, then 

~(~)= ~(~). 

PROOF. Let Tbean inve r t ib l em.p . t .  and assume Trl: T---*T~andTr2: T-*T2. 

For i = 1 , 2  choose A, EB(T, )  and let a,={A,,A~,}. Let )f, = {{xA o T" (x ): 

n E Z} x ~ X,}, ~, = the o--algebra generated by V~=_~ T?a, (Note that sets in 

~, are subsets of X,), ~, =/~, [ 2, and ~ = the shift on ..~,. 

Furthermore, let ao = zr~'al v zr~-'a2 = { A , -  A2, A1 n A2, A~2 - A,, 

(A~ Ufi.2)~} = {B,, B2, B3, B4} where A, = ~-;~A, ( i =  1,2). 

Let Xo = {{Z,~=~ ixs, ~ T"(x);  n E Z}: x E X}, ~o = the g-algebra generated by 

V~=_~T'ao, /i0 =/z  [~, and T0 the shift on ..~,. 
Then, for i = 0, 1,2 (..~,, ~ .  ~,) are Lebesgue spaces, and the following diagram 

represents the relationship between the above transformations: 

id ^ 

/ id ^ / 
T = T  O 
\ \ ^  

112 'E2 

'~Tz id "x~^ --T2 
Moreover, T, and T2 are r.e.m.p.t.s. Thus, by (2.5) 

(2.13) M(T,) = , i f ( t )  (i = 1,2). 

Now, by Lemma 2.3 (i) ::t an ergodic decomposition (D, X, P, {/z,o}) for To. Now, 

~-7'~, (i = 1, 2) are countably generated, T0-invariant, o'-finite sub<r-algebras 

of /3o and (X'0, rrT~/~, /2o, To) (i = 1,2) are ergodic. Hence by Lemma 2.3 (ii) 
:ID,' C D, s.t. P(D,') = 1, Cl, C2: ~'~t......_~ (0 00) s.t. Vto E D' 

/x,~('~'7'A,) = c,(to)/~,(A) VA E ~, (i = 1,2). 
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But this just means that for to E f r ,  7"~ ~ T~ and 1"~ ~ "P~.. So we have shown 

that T, and 7"2 are factors of an e.m.p.t. Thus, by (2.4) and (2.13) 

= = O.E.D. 

w Markov shifts and recurrent events 

First, we recall briefly the definition of a Markov shift (see Chung [4] and 

Harris and Robbins [11]). 

Let S be a countable set, the state space, and P = {p~.,}5.,~s be a stochastic 

matrix [4] (sometimes called transition matrix). 

If P has a stationary distribution m ={m~(P)}s~s (satisfying ms=>0, 

E~sm~p~., = m, Vt  E S)  then we can define the (two-sided) Markov shift of P, 

(P, m), as follows: 

X = S z = { ( . . . x _ l , x o , x , . . . ) :  x, ~ S Vn ~Z}  

is the o--algebra generated by cylinder sets; /z~ is the o'-finite measure 

generated by 

= s . . x .+ ,  = s ~  . .  " x . + k  = s o + k ] )  

= m~.p ....... . . .p ... . . . . . . . .  Vn  E Z, k >- I, s, . . .s,.k E S 

where [x, = s , , . . . ,x .+k = s,+~] denotes the set {x ~ X: x, = s . . - . x , . k  = s,+k}. 

(X, ~,/xe, G,) is an invertible m.p.t, and is known as the ( two-s ided)  Markov  shift 

with transition matrix P (and stationary distribution m). 

Because of 

THEOREM 3.1 [11]. Te is ergodic iff P is irreducible recurrent. 

and 

THEOREM 3.2 [4]. I f  P is irreducible, recurrent then there is a stationary 

distribution for P, unique up to multiplication by a constant. 

it is evident that the measure space, upon which an ergodic Markov shift is 

defined, is unique up to constant multiplication of the measure. 

Let m ( P )  be a stationary distribution of the (irreducible, recurrent) stochastic 

matrix P. Then P is called positive or null according to whether ( E ~ s m , ( P ) ) - '  is 

positive or zero respectively. There are many irreducible, null recurrent stochas- 

tic matrices, and their Markov shifts are i.e.m.p.t.s of infinite measure spaces. 

We will show in this section that any i.e.m.p.t., having one as a factor, is 

rationally ergodic. 
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(3.1) 

Define 

It is convenient to introduce an example at this stage. Let {f,}~=~ be s.t. 

f .  _->o, x L , f .  = 1. 

(3.2) f ( A ) = ~  f.A", u ( A ) = ~  u .A"=  1 ~ ,=,, l - / ( a )  _u ={u,}:=o. 

The sequence u is called a recurrent renewal sequence, as is any sequence 

obtained in this way from an {f,} satisfying (3.1). Conversely, any recurrent 

renewal sequence _u has a unique probability distribution {f.(_u)}, on N 

associated with it. Kaluza, in [14], showed that if _u = {u,}~=0 satisfies Uo = 1, 

Z~0 u. = ~, & u,+~/u. ~ 1 as n '~ ~ then u_ is a recurrent renewal sequence. This 

theorem identifies many recurrent renewal sequences (see Kingman [16] for an 

exposition). 

Let _u be a recurrent renewal sequence, define a stochastic matrix as follows: 

f , (u  ) i f s = l  

p~,,= 1 i f s - > 2  t = s - 1 ,  P~ ={ps.,} .... N ( S = N ) .  

0 otherwise 

Then ([4]) p~'~) = u,, n - 0; and ~ is irreducible recurrent, and has the stationary 

distribution m ( u )  given by 

m s ( u ) =  ~ ~(u)  (s => 1). 
t = s  

It is seen that P_. is positive or null according to whether (ZT=,nf,(u))-~ is 

positive or zero respectively. 

We denote by 7", the Markov shift with transition matrix P., and call it the 

Markov shift of the (recurrent) renewal sequence u. 

We now examine the more general property of i.e.m.p.t.s, of having some 

Markov shift as factor. 

Let T be an e.m.p.t, and let A E J:. We will say that A is a recurrent event itt 

V0 < nl, < < = ~ ~ 1 7 6  ~ n k  

/ = 1  ] = !  

where no = 0 and ~A(B)  = g ( A  N B ) / g ( B ) .  (Compare this to the definition on 

p. 307 of [5].) We denote by M ( T )  the collection of recurrent events for T. We 

shall say that T admits recurrent events iff M ( T )  ~ 0 .  
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It follows from the renewal theorem [4] that any e.m.p.t, admitting recurrent 

events is of zero-type [8]. 

Now, if Tp is some ergodic Markov shift and s E S then [Xo = s] E M(T~). 

Conversely, it is not hard to prove that if A E M(T)  then u ( A ) =  

{~A(T-"A)}~=o is a renewal sequence and T---~ ~A).  We sum this up in the 

following proposition. 

PROPOSITION 3.3. An  e.m.p.t. T admits recurrent events iff it has some Markov 

shift as a factor. 

Thus, we see that the M in M ( T )  is in honour of Markov. 

THEOREM 3.4. Let T be an i.e.m.p.t. I f  T admits recurrent events then T is 

rationally ergodic. Moreover, M(  T) C_ B(T) .  

PROOF. It is sufficient to show that M(T)  C B(T).  To this end, l e tA  E M ( T )  

and u . (A  )= u, = la, a (T-"A  ). Then 

XA 0 T k dt z = I-~ (A f3 T-kA f3 T-IA ) 
k = 0  k = 0  I = 0  

<<_2 ~ ~ tz (A N T-kA M T- 'A ) 
k = o  l = k  

- -  

k = O  I = k  

n n - k  

= 2 /z (a )  E ~ uku, 
k = 0  I=O 

~ 2~ (A) uk ~ (A) 

i.e. A E B(T) .  Q.E.D. 

We note that example 3.2 of [7] is equivalent to the result: ergodic one-sided 

Markov shifts with transition probabilities satisfying the strong ratio limit property 

are weakly rationally ergodic. 
Having shown that ergodic Markov shifts are rationally ergodic, we now 

calculate the asymptotic type of an ergodic Markov shift in terms of its transition 

matrix. 
Let Tp be the ergodic Markov shift with transition matrix P and considered 

with stationary distribution m (P). Let s ~ S, then, by Theorem 3.4, [Xo = s] E 

B(T~), and so 
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(3.1) 

a,(Te) -a"([x~ - --1 ~ lJs.s-'k) 
m s ms ~ =o 

for any return sequence a,(Tp) 

and 

p s ,  s �9 
k =o  

Applying (3.1) and (3.2) to (2.3) and Theorem 2.4, respectively, we obtain the 

following: 

THEOREM 3.5. Let Tp and To be ergodic Markov shifts with transition matrices 

P and Q respectively. Let s and t be states of P and Q, then 

(i) 

~ft, t 

(3.3) Tp c To :::> k�88 , m, (O) .  
~] gs, s-(k' "~= ms(P) c, 
k =0  

(ii) 
~ ( k )  
{,~ t,t 

(3.4) Te ~ To ~ 31im k=,,, 
r t ~  Z _ ( k )  

/ J s , s  
k = 0 

(o, 

We note that the lemma on p. 204 of [23] means that: f f w  is a non-increasing 

renewal sequence then 

eg(Tp) = ~r ~ Tp • T~ and To x T~ are simultaneously 

(3.5) conservative or dissipative (where Tp and To 

are ergodic Markov shifts). 

This means that sO(. ) refines the invariants of [23] when restricted to ergodic 

Markov shifts. (The invariants of [23] are actually invariants for similarity.) 

In [18] and [23] uncountable collections of non-isomorphic ergodic Markov 

shifts were constructed. We point out that, since the shifts in these collections 

can be separated by the invariants of [23], they in fact have distinct asymptotic 

types. 

We now show that there is a connection between the asymptotic type, and 

something like the ergodic index (cf. [13]) of a transformation admitting 
recurrent events. 



108 J. AARONSON Israel J. Math. 

Let T be an i.e.m.p.t, and T. its n-fold Cartesian product. Define (as in [13]) 

the ergodic index of T to be: 

e(T)  = max{n -> 1: T, is ergodic}; 

the index of conservativity of T to be: 

c(T)  = max{n _-> l: T, is conservative}; 

and the dissipating index of T to be: 

d(T)  = min{n _-> 1: T, is dissipative} 

where e (T)  = ~ (c(T),  d (T)  = 2) means that 7", is ergodic (conserva t ive- -not  

dissipative) for every n -> 1. 

It is shown in [20] that: 

e(T)  = c (T)  = d ( T ) -  1 if T is an aperiodic Markov shift 

and that 

c(T)  = d (T)  - I if T is an ergodic Markov shift. 

It follows from this that 

(3.6) c(T)  = d ( T ) -  1 if T admits recurrent events. 

The following shows a connection between asymptotic type and index of 

conservativity: 

PROPOSmON 3.6. If T is an e.m.p.t, admitting recurrent events and a, (T) is a 

return sequence for T then 

- -  l og  a .  ( T )  1 
(3.7) lim _-< 1 

, -~ logn c ( T ) +  1 

(and hence lim,_~ log a,(T)/log n = 1 ~ c (T)  = 2). 

PROOF. Let A E M(T) ,  then it follows from Theorems 3.1 and 3.2, and (3.6) 

that if c ( T ) < ~ ,  

(3.8) ~ u.(A)C,~-' < 2. 
n = 0  

Thus it is sufficient to prove the following: If u. _-> 0 and ~ = ,  u~< ~ (where 

/3 > 1) then 
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(3.9) 
log ~] uk 

k = l  1 
lim < 1 - -  
--~ log n f l '  

By H61der's inequality 

(3.10) 
1 

= M~ <oo V a > l - - -  
/3 

Hence, Va > 1 -  1//3 and n => 1 

k = l  

1 
a > l - - -  

/3 

i.e. 

(3.11) log ~ uk -< IogMa + ot log n 
k = l  

where M~ < % 
1 

Va > 1 - ~ - .  

From (3.11) follows 

log ~ Uk 
k = l  1 

lim ~ a, Va > 1 - - -  
- ~  log n /3 

which is the same as (3.9). Q.E.D. 

Theorem 1 of [23} has the same flavour as the above proposition. 

w Entropy and normalised asymptotic type 

In this section we will combine asymptotic type and entropy to obtain a 

stronger invariant for weak isomorphism of r.e.m.p.t.s with positive finite 

entropy. We call this invariant "normalised asymptotic type". 

First we recall from [18] the definition of entropy for i,e,m.p,t,s preserving a 

o-finite but not necessarily finite measure. 

Let (X, ~,  tz, T) be an i.e.m.p.t, wi th /z(X)  =< 00. In the case/~ (X) < ~, we will 

let h(T) denote the Koimogorov-Sinai entropy of T w.r.t, the normalised 

measure (1//z (X))/z (see [3]). We shall need a theorem of Abramov ([1]) which 

states that: if tz (X) < oo and A E ~ then 

(4.1) tz(A ) h t T  ~= h(T).  



110 J. AARONSON Israel J. Math. 

Now, let ~(X)=< ~. If A , B  E ~ and A C_ B then since 

(4.2) TA = (T,)a 

we have by (4.1) 

(4.3) F ( A  ) h(Ta) = h(T,)  
tx(B ) 

Now, (4.3) combined with the fact that if A , B  E ~ then A ,B  C_ A U B E 

yields that 

(4.4) 3 a constant h (T)  s.t. ~ ( A  )h(TA) = h (T) VA  ~ ~T. 

We call this constant h (T) (as in [18]) the entropy of T. 

In case /z (X) < oo 

(4.5) h ( T ) =  t z (X)h (T) .  

Now let T,T '  be i.e.m.p.t.s, A ~ ~ '  and assume 7r: T c T', then 

7I": T,~-'A "--> T~ and so ([3]) h(T,~-,a) >- _ h(T~,). Hence 

(4.6) h ( T ) =  t z (Tr- 'A)h(T ,  'a) > c l* ' (A)h(T~)= ch_ (T') .  

This tells us that the following entropy classes are preserved under weak 

isomorphism: ~'0 -- {T i.e.m.p.t.: h (T) = 0}, ge+ __ {T i.e.m.p.t.: 0 < h ( T ) <  oo} 

and ~'= = {T i.e.m.p.t.: h (T) = oo}. (We note that the T of Example 1.2 is not in 

We now recall the calculation of the entropy of an ergodic Markov shift in 

terms of its transition matrix: 

THEOREM 4.1 ([18]). Let Tp be an ergodic Markov shift with transition matrix 

P and let 0 E S be a state, then 

_h (Tp) = mo(P)ho(P), (4.7) 

where 

ho(P)-- ~ * P log 1 o p  0 ,s s,t 
s, tes p~t 

PROOF. (Sketch) Let Oto= E~=~{[Xo= 0, x~ = s~ ' . .x ,_~= s._,, x. =0] ,  n = 1, 

st"" .s,_, E S -{0}}. Then ([12]) the (Tp)t,o=oriterates of ao are independent and 

generate ~ n [Xo = 0]. Hence h (Tp) = ~P([xo = 0])h((TP)t,o=o]) = mo(P)H(ao). 
It is shown in [18] (by calculation) that H(ao) = ho(P). Q.E.D. 
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(We note that (by 4.7) if Teis a Markov shift, then h (Tp) > 0 automatically.) 

If u is a recurrent renewal sequence, then Theorem 4.1 yields that 

1 
(4.8) h (T~)=  H ( f ( u  )) = ~ ,  f . ( u  )log)~ (_. )- 

The following proposition gives many Markov shifts TeE~+. 

PROPOSrnON 4.2. If U is a recurrent renewal sequence and a. = E~=ouk then 

E~=, 1/na, < oo ~ T~ E ~+. 

PROOF. It is sufficient to show that H(f(_u )) < ~. 

Step 1. 

(4.9) ~ (log n)f,  < oo ~ H( f )  < 2.  
n= l  

Proof of Step 1. 

function x log ( i /x)  is increasing on (0,-~) 

, 1 < 21og(n + I) 
(4.10) f. i o g ~ =  (n + 1) 2 

If n ~ A ,  then 

Let A = {n => 1: f. <-_ 1/(n + 1) 2 } then if n E A, since the 

1 
(4.11) f, l o g ~ -  < 2(log(n + 1)).I:,. 

Using (4.10) and (4.11) we see that 

1 1 
H ( f ) =  .~A • f" l o g ~ +  n~AE f. log~. 

~ 2 1 o g ( n + l )  ~ 
= = ( n + l )  2 + , = 1 2 ( l ~  <~176 

and Step 1 is taken. 
Step 2. 

c~ < ~ where (log n)f,  < oo iff n-~ ~ 
rt=l = 

Proof of Step 2. 

2, i 2,2/ = n 2 k = l  = = 

! = k + l  

i f f  X ~ = l  C n / n  < ~ a n d  
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r l = l  n - = n k = n + l  

iff E~=, (log n)f. < ~. 

It is now sufficient to show that 

~ 2  k-I 
= n = l  n 

1 " ~ 1 
~ - ~ Z  c k < ~  iff < ~ .  
.= i = ) = ha. 

To do this, we show 

(4.12) ( , , + I ) - <  c,_-2(n + I). 
k = 0  I = 0  

Now, since Y~=oukA k YT-,,c,A' = 1/(1 - A)VA E (0, 1), we have 

(4.13) ~ u~c,-k = 1 n >= O. 
k = 0  

Hence 

n - k  

m = O  k=O k = O  ra=k k = O  / = 0  

<= uk c, <= ( n + 1)+ uk c, 
k = ( I  I = 0  k = O  I=n-k 

k = 0  m = 0  

<--(n + l ) +  ~ (k  + l ) u k c ,  k "" c .  J, a s n  1' 
k = 0  

=< (n + l) + (n + l) ~] UkC,-k = 2 ( n + l )  
k = 0  

by (4.13). 

Q.E.D. 

It also follows from Proposition 4.2 that if T (an i.e.m.p.t.) admits recurrent 

events and Y.~=~ 1 / n a , ( T )  < ~ then 

(i) T is quasi-finite (in the sense of  [18]), and 

(ii) the entropy o1: the first return time partition o[ every recurrent event of  T is 

finite. (See [17] for a related result.) 

We will now construct the advertised invariant for weak isomorphism of 

r.e.m.p.t.s in ~'+. 

Let T be a r.e.m.p.t. T E ~'+, if {a.(T)} is a return sequence of T then we let 
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(4.14) d. (T)  = h (T )a . (T )  

and call the sequence {~i,(T)} (and any sequence asymptotically equal to it) a 

normalised return sequence of T. 

We denote by ~ ( T )  the collection {{a.} a sequence: a , / & ( T ) ~  1 as n-~o0 

for a normalised return sequence of T} (i.e. ~ ( T )  denotes the collection of 

normalised return sequences of T). We call ~ ( T )  the normalised asymptotic type 

of T, and prepare to abuse our notation in the following way: 

we say that T is of normalised asymptotic type {f(n)} if f (n ) /d , (T ) -+  1 for any 

normalised return sequence of T{~,(T)}, and we write this: ~ ( T ) =  {f(h)}. 

Now, among transformations preserving finite measures normalised asympto- 

tic type boils down to Kolmogorov-Sinai entropy, since 

(4.15) # ( X ) < ~  ~ W(T) = {h(T)n}. 

(To see this, note that a,(X, T ) / # ( X )  2 is a return sequence, and hence 

any dr,(T)~ h (T) .  a,(X, T)/I~(X) 2 = t z (X)h(T)"  t z (X)n / t z (X)  ~" • h (T)n  as 
n -----) oc ) 

We now show that the normalised asymptotic types of weakly isomorphic 

r.e.m.p.t.s in g'. coincide. 

THEOREM 4.8. Let T and T' be r.e.m.p.t.s s.t. T, T' E ~g+ then T ~- T' (i.e. T is 

weakly isomorphic with T') ~ ~ ( T ' ) =  ~ ( T ) .  

PROOF. From (2.5), we have that (since T ~ T' are r.e.m.p.t.s) :lc E (0, oo) s.t. 

T c ) T' and T ' ~ ,  T. Hence an application of (2.3) gives 

(4.16) a.(T').__~ a, (T)  c as n ---, oo 

and a double application of (4.6) shows that 

(4.17) h (T) = ch (T'). 

Combining (4.16) and (4.17) it is evident that dt.(T')/&(T)---~ 1 as n - ~ o o  i.e. 

W(T) = ~ (T ' ) .  

We note that it follows from the above proof that 

h(T) /h (T ' )  
T ~ T'(T, T' r.e.m.p.t.s in ~g§ ~ T ) T' 

(4.18) 
and T' ~ (r ' ) /~ (T)) T. 

Q.E.D. 
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Now let Te be an ergodic Markov shift in ~+ with transition matrix P, and let 
s E S be a state. Then, by (4.7) and (3.1), 

(4.19) ~(Tp) = h,(P p~k,. 

In particular, if _u is a recurrent renewal sequence s.t. T, ~ ~. ,  then, by (4.8), 

(4.20) ~ ( T ~ )  = H(f(u uk . 
k=O 

We now construct uncountably many Markov shifts {T,}o<,,<~ with the 

asymptotic type but distinct normalised asymptotic types. 

Let u. = 1/V'n + 1, then _u = {u.}:=o is a recurrent renewal sequence, and (by 

Proposition 4.2) T~, E ~+. 

For a E(0,�89 let f~(a)=a and f . ( a ) = ( 1 - a ) f , _ , ( _ u )  (n->2).  Denote by 
_u (a)  = {u.(a)}~=o the renewal sequence associated with {f,(a)} and let 

u,,(h)='~"~ u , ( a ) h "  0 < h < l ,  and T~=T,~) .  
. n ~ o  

Now 

(4.21) H(f(a)) = rt(a)  + (1 - a)H(f) 

where 7/(a) = a log (1/a) + (1 - a )  log (1/(1 - a)). Also 

(4.22) u(h)  = ( 1 -  A) u ( h ) +  h ( 1 -  a )  

- - -~(1-a)  as A 1' 1-. Hence (using Karamata's theorem [15], [6]) 

uk(a) 1 
- -  a s  n --*~. (4.23) ~=1 ~" 1 - a 

Substituting (4.21) and (4.23) into (4.20) 

(4.24) Y((T,)= {( (1- -~a  ) +  H(f(u )))k~__ ~ u~}= { 2 ( ( 1 _  o~)+ H(f))~/n} 

and we see that 

(4.25) ,if(T,,) = {~/n} 'Ca E (0,�89 

Thus, from (4.24), it follows that 
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(4.26) 

�9 �9 • (a)/(1 - a )  increases strictly on (0, �89 So { T,,} all have the same asymptotic 

type, but distinct normalised asymptotic types, hence no two distinct T,, and T~ 

can be weakly isomorphic. 

w Random walks on Z 

Let 

(5.1) f={f .}7= = b e s . t . f . _ - > 0 V n E Z a n d  ~ f , = l .  

Define the stochastic matrix p,.,(f) = f,_, Vs, t E Z. Clearly m, = 1 Vs E Z defines 

a stationary distribution for P(f). 
We denote by Tt the Markov shift of the matrix P(f) w.r.t, this stationary 

distribution and call it the random walk with jump distribution f. 
I f f  satisfies (5.1) and Y~=-=I n If- < ~ then (by Theorem 3.1 and [24] p. 33) 

(5.2) Tt is ergodic iff ~ nf, = 0 and g.c.d{n: f, >0} = 1. 

Let Tt be an ergodic random walk. An inspection of (4.7) shows that 

h (Tt) = ~, and so w does not apply to random walks. 

Let 

o'(f) = n2f, and d~(t) = f,e ''. 
r l  = - - ~ 1  n = - ~  

We shall begin by considering ergodic random walks with finite jump variance 

(i.e. f satisfies (5.2) and or(f )< ~). 

THEOREM 5.1. Let f satis[y o-(f)<0o and (5.2), then 

(5.3) 
k =0 

a s  n ----.~ oo 

PROOF. If P(f) is aperiodic, then, by Spitzer's theorem ([24], p. 75), 

1 
(5.4) ,k~ po,o(f) as n ~ .  

V'Zrrno'(f) 

If P(f) has period d > 1 then po,o(f)tk) = 0 when d ~ k and it can be shown from 

(5.4) that 
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(5.5) / d 1 p{kn};t, 
o.o V ) ~  ~/ 2--~'wk o'(/)  as k --,oo. 

From (5.5) follows (5.3). Q.E.D.  

Now assume that f and f '  satisfy (5.2) and that o ( f ) ,  o-(f') < oo. If Tt ~, T r then 

i.e. 

(5.6) 

(k)t,r po.ou t 
c l ima"(Tr )  �9 k=o o'(f) = = h m  w - 

p0.o(f) o'(f ') 
k =0 

by (5.3) 

,r(f)/a(i')  
T,--~ Tr ~ T t 

and T t - /~  T r J:or 

) r r  

c ~  ' ~ )  
,~(f')" 

We also see that 

(5.7) o'(f)  < ~ ~ M(Tt)  = {X/n}. 

We now prove the converse to (5.7). 

The following two lemmas slightly sharpen w on p. 72 of [24] (when d = 1). 

LEMMA 5.2. Let f ,  >= 0, E~=_| = 1 and f .  = f _, V n E Z, 

g.c.d. {n : f ,  > 0} = 1, 

o ' ( f ) = ~  ::~ X/np~j3](f)-~O as n - - - ~ .  

PROOF. Let a( t )  = (I - cb(t))/t z (a real valued function). The following (easy) 

facts are proved in Spitzer ([24]): 

fo ~ 
p,,o(f) - 6 ( t ) " ~ ,  ( i )  ("' - 

(ii) ,~in_f l a ( t ) =  ao>O. 

We note that also: 

(iii) l i m a ( t ) = l i m  2 f , l - c ~  t 2 �9 .. f . - - f _ .  

lim 1 - cos nt 
>- ] : .  t 2 

n = - ~  t ~ o  

by Fatou 's  lemma 
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Now, by (i) 

rr~/npl,7,](f) = Vn fo = (1 - tZa(t))"dt 

= ~f Xto.,~.,(t)(1 -t2 [ tnal~7-ffn))"dt 

< ttXe -aO/V'n) t2 = Xco,~,,)~ j dt  ) 0 

by dominated convergence since 

by (ii) and 

LEMMA 5.3. 

(changing variables) 

/ . \  -aOl',/n)t2 X~o..v.Al)e = e -~ :  E LI(R+) 

X(o.~'~ ,~(t)e-a('/v")'2 , 0  Vt  E R+.  

Let [. >-_ O, Z ~ ~  = 1, g .c .d .  { n : / ,  > 0} = 1, then 

o-(f)=or ~v/np~oYd(f)---~O as n---~. 

O.E.D. 

as n - ~ .  

Vk EZ 

S o V k E Z ,  n = l  

(5.10) ,2",-,- f_ i po, k r , j ] -  

Thus by (5.10) and (5.8) 

(5.11) ~/np~o~)([)---~O uniformly in k E Z 

Now let e > 0  and N s.t. V n - > N  

X/ np ~o22)(f) < e 

= J qb(t)[ ~. 

~b(t)Z"e-'k'2d--~t <= f_ ~ 14~(t)12"2d--~t = pto.~(g). 

(5.9) 

Also 

~ g.e''= ~ ~ f,,fm-.e''= ~ ~ [me . . . . .  fm-.e " - " "  

(5.8) X/np~oTd(g)--*O as n --. oo. 

PROOF. No generality is lost in assuming P(f) to be aperiodic. 

Let g, = E==_=f,.f,,_., then g = {g.}~=_~ satisfies the conditions of Lemma 5.2 
and or(g)= oo. Thus 
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then, if n _-> N, 

= po.k (f)f-~ < e. - - , , F  o,o ~ 1 ]  = 
k ~ Z  

Hence X/np(o?d(f) --) 0 as  n - ~  o~. Q . E . D .  

THEOREM 5.4. Let Tf and T r be ergodic random walks with jump distributions 

f and f '  respectively. 

I f  M(Tt) = M(Tr) then tr(f) and cr(f') are finite or infinite simultaneously. 

PROOF. By (5.7), it is sufficient to show that if o'(f) = oo then X/np~o"~o(f)---*O as 

n ---* ~. But this is exactly Lemma 5.3. Q.E.D. 

The above theorem is the converse to (5.7) (i.e. M(Tt)= {X/n} => o ' ( f )<  ~) 

and means that the only ergodic random walks similar to an ergodic random 

walk with jump distribution of finite variance can be other random walks with 

jump distribution of finite variance i.e. o'(f) < 0r T t -  T r ~ tr(f') < oo. 

There is no analogue to (5.7) when or(f) = oo. To illustrate this, we construct an 

uncountable collection of ergodic random walks, with distinct asymptotic types, 

and hence pairwise dissimilar. 

For a E (1, 2) let 

A ( a )  [ h i >  1 1 Inf 
f . ( a ) =  where A ( a ) - 2 ~ ( l + a  ) 

0 n = 0 .  

Then 'qo~: {/,(a)},~z satisfies (5.2). 

Let T,, denote the (ergodic) random walk with jump distribution {f,(a)},. We 

calculate M(T,,). Let 

1 ~ 1 
cb,(t)= ~ f , (a )e  '~' ~ ' ( l + a )  = . = - =  - -  - -  ~ C O S  t l t .  

We begin by investigating the behaviour of ~b,(t) near 0. 

LEMMA 5.5 ([2], p. 141 ft.) Va E ( l , 2 )  :IK, E(O,~)  s.t. 

(5.12) 1 - ~ b . ( t ) ~ K .  ltl ~ as t ~0.  

PROOF. Recall that 

1 _ 1 y"e-"Ydy Vn > 1. 
n ~*~ F(1 + a 
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Now, since 

1 - th~ ( t )  - ~ ' (1  + a - -  

it is sufficient to show that  

fo~ (5.13) tk~ (t) = (1 - cos nt)  
n = o  

1 - cos nt 

y ~ e - " d y - K ,  ltl" as t $ 0. 

Exchanging  integral  and s u m m a t i o n  signs and summing  we see that  

(5.14) qJ~, ( t ) =  d(t) H , ( y ) d y  

where  H , ( y )  = y ~ e - ' ( 1  + e - ' ) / ( 1  - e - ' ) ( ( 1  - e - ' ) 2 +  2e-'d(t))  and d(t) = 
1 - cos t. 

We  note  that  H , ( y )  1' Ho(t) as t - -*0  and that  

(5.15) Ve > 0  g o ( y ) d y  = 0% H o ( y ) d y  <oo. 

F r o m  (5.15) it follows that  if G, (y)  - H, (y)  uniformly in t > 0 as y ~ 0 then 

(5.16) "fo ~ G,(y)dy ~ fo ~ H,(y)dy as t ----~ O. 

Now H , ( x ) - y ~ - l / ( y 2 + 2 d ( t ) )  uniformly  in t as y ~ 0  and  so, by (5.14) and 

(5.16), 

fo ~ y~-' dy ~b~(t)- d(t) y 2 +  2 d ( t )  as t---~O 

fo x ~-~ dx var iables  = (d(t))~/: x 2 + 2 changing 

- K ~ l t [  ~ a s  t - - * 0  

sinceO< fox~-~/(x2+ 2)dx =2"/2K~ <ooandd( t ) - t2 /2as t - -~O.  Q . E . D .  

THEOREM 5.6. ' V a  E (1,2), M(T~) = { n H ~ } .  

po.o(a) as n ~ oo. PROOF. We  p rove  that  ~ ~ Kn -~/~ 
Let  e > 0, by L e m m a  5.5:1~5 > 0 s.t. 

(5.17) 1 - ( l + e ) K ~ l t t ~ < = c b ~ ( t ) < = l - ( 1 - e ) K ,  Itl ~ Ylt]<=& 

Now,  arguing as in the p roof  of Spi tzer ' s  t h e o r e m  ([24], p. 75) 
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'/~ ~,~I ~ -  cb~(t)"dt + n ',~ ebb(t) dt. 7rn po.o~a I - n ~/~ (5.18) 

Now 

(5.19) n ''~ r b ~ ( t ) " d t < - ( r r - 6 ) n "  sup4~(t) �9 ,0. 

So, by (5.17), 

8 
P 

lim n ~/~ (1 - (1 + e ) K ,  It l~)"dt <= lim 77"/1 "~ _-< lira "~ '"" o,ol~ ) 

w Other ratio limit properties o| e.m.p.t.s 

In this section, the ratio limit properties of e.m.p.t.s are investigated further. 

THEOREM 6.1. Let (X, ~3, tz, T)  be an e.rn.p.t, with (X, ~ ,  tz) separable. Then 

V A  E 0% q an algebra of subsets of A ,  aA, tz-dense in ~ f3 A = {B E ~ ,  B C A }  

S.t. 

1 " 
a,(A)k~=~, tx(BNT-kC)---~tz(B)tzlC)p.(A VB,  C E O A .  

PROOF. (Compare this proof to the proof of Theorem 1.4.) 

Let A E 0%. In [11] and [19], it is proven that there is a measurable, compact, 

separable, completely disconnected topology on A, ~-dense in ~ O A, such that 

Ta: A ~ A is a uniquely ergodic homeomorphism with unique invariant proba- 

bility /-ta. Let aA be the algebra of clopen subsets of A - - i t  is clearly/z-dense in 

A. Let ~b. = (1/a.(A))E~=oXa o T k and P . ( B )  = f .c~.dtz:  then {P.}7=, C C ( A ) *  

and Ir P.II = 1 Vn. Since A is compact and separable, every subsequence of {P.}7=, 

(5.20) 8 / -  

<= limn'/aJo (1 - (1 - e)g~l t l~ )"d t .  

Now, by a change of variables, it follows that Vc > 0 

n '/" ( 1 -  c ltra)"dt = 1 -  c dt , e-r = F(c )  

by the dominated convergence theorem. F(c) is a continuous function of c. 

Combining this fact with (5.20): 

1 7rn~/~p~,~(a)---~ e-KJ'l"dt as n---~oo Q.E.D. 
) 
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has a weak * convergent subsequence. By Lemma 1.3, all the weak * limits of 

these subsequences are TA-invariant, and hence, by unique ergodicity and the 

fact that P.(A) -- 1 Vn, equal to/za.  In other words every subsequence of {P.} has 

a subsequence converging weak * to/ZA - - i . e . P .  ,_--r p,A weak *. In particular 

1 " _~ I~(B) V B E a ~  
a,-(n)~l I z ( B N T  A )  , ~ l  tz(A) 

and by symmetry (since a.(A, T)-- a.(A, T -~) 

1 " 
a,(A)k~_, ~ ( A N T - k B )  .~| ~ I~(B)lz(A ) V B E a a .  

Now choose C E aa and let 0, = (1/a,(A))E~=1Xc ~ T k and Q.(B)  = fa@.d~t. 

Then IO.} C_ C(A)+*, If Q. II --< If P.II --< 1 Vn, and O. (A)--* tz (C)/Iz (A). An identi- 

cal argument will show that Q, ~ tz (C)/Ix (A)  tza weak * Q.E.D. 

In a similar manner to the proof of (i) :ff (ii) of Proposition 1.1, aA can be 

extended to a collection ~A,/z-dense in ~, thus showing (1.4). Note that we have 

shown that (1.4) holds with a collection qga which can be chosen to include any 

A E ~. Theorem 6.2 shows that the collections {~A}A~ in fact form a very large 

non-homogeneous class when / z ( X ) =  oo. 

Theorem 6.2 also shows that in spite of Theorem 6.1, it is never true that 

R(T)  = ~ when tz(X) = oo. 

The existence of a similar result is mentioned in [7] (remark 4, p. 64). A 

stacking construction privately communicated by Krengel helped in the compos- 

ition of Theorem 6.2. 

THEOREM 6.2. Let (X, ~, tz, T) be an e.m.p.t, with tz(X)= oo. Then 

V A E ~  3 B E ~  s.t. a.(B)/a,(A)---~oo as n---~.  

To prove this theorem, a technical lemma is needed. 

LEMMA 6.3. Let b . , c , > 0 ,  Vn, be numbers s.t. b.---*~, c,>-C.+l--*O and 

ST=, c. = ~, then 3{e,}~=, s.t. (i) e. => en+l, ( i i )0 - -  < e, =< C., (iii)E7=1 e, < ~ and 

(iv) b. E~ =. ek --* o~ as n ~ oo. 

PROOF. There is no loss of generality involved in assuming that b. <= b.+~ Vn 

(for if not, work with b*=infk~=.{bk}<_-b*+l<-b.+~ Vn). Choose {nk}~ s.t. 

E~ c.~ < o0 and Ek 1/X/b.~ < ~. 

CLAIM. 3{mk}~=t, {e.}7=1 such that nk ----< m~ < mk+l Vk, 0 < e.+l --< e. _--< c., Vn, 
and h-1/2 < Emt~*,  < ]'1-1/2 "4- = ~-~-, = I . . . .  1 e ,  . . . . .  _ c.~+,Vk > 2 .  
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PROOF OF CLAIM. The  k th  inductive step is given. 

Assume m , . . .  mk and e ~ , . . ,  e,,~ have been chosen satisfying the condit ions 

of the claim for 2 =  l_-< k -  1. We show how to choose  m~.l and extend the 

sequence to e, .... , era,+,. 

Choose  M > ink, nk+l s.t. 8 = b~2n,/(M- ink) < e,~ and for n > mk let 

=f 8 if 8<=c. 
& t c. else. 

Let  mk+~ = min{n > mk: Y" > b -'a/, = �9 = , . . . .  ~e~ . . . . . .  . It follows that mk+~ > M ( ' .  & < 

Vn)  and that M < oo ( . . .  Y.c ,  = ~). 

Let  e, = & for mk< n <= mk§ then 0 =  e.+~ =< e. < c. and 

mk+l 
--I/2 2 ~ /'1--1/2 b.k_, =< ej = ~.._, + c.,,.,. 

] = m k + l  

Thus the claim is established by induction.  

The  sequence  {e.}~=, const ructed  has already been shown to satisfy (i) and (ii). 
It remains to prove (iii) and (iv). 

t t '"  t (iii) e . =  ~ e, < tb - m + c  . . . .  ) < o o  t nk I - -  
n=m2+l k=2 l=mk+l  k=2 

(iv) Let k~ bes . t ,  nk,-~=<l<n~, then 

" k'~4~ ~' bs . Q .E .D .  El > El > h - l ~ 2  ~ -1/2 

1=1 ]=mk+l 

PROOF OF THEOREM 6.2. Choose  A E ~, and for n => 1 let 
n - I  

A , = A N T - " A -  (_J T-kA, B , =  6 Ak = A -  6 T-kA, 
k = l  k = n + l  k = l  

n - I  ~ n 

D. = T"B. = T"A - kl'J=o TkA' b. a . (A ) and c. = / x ( a . )  = g ( D . ) .  

It follows that b . - - , %  c. ,l, 0 and 2 : = , c .  = ~. Let  {e.}~=t be a sequence  of 

L e m m a  6.3 appropr ia te  to {b.}. and {c.}.. Define {k.}:=, by ck. =< e. < ck.-,, then 

n =< k. =< k.+~. 

Using the non-atomici ty  of ( X , ~ , / z ) ,  one can find F.C_Ak. s.t. g ( F . ) =  

e . - c k . .  Let E .  = I...J~=k.+,A, UF . .  Then  B.~_E. ~_E.+, and / . t ( E . ) =  e,, Vn. 

Let B = I..J~=, T"E.. This is a disjoint union since T"E. C_ D. and {D.}.  are 

disjoint, so / ~ ( B ) =  2 ] =  e. < cr Now 

B fq T~B = B f3 6 T~k+")E. ~- 0 T"E.. 
n = l  n = k + l  

Hence  
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a.(B)  > )~_o > a . ( A )  = a . ( A  ,= , = a . ( A  e~ 

= b . ~  ~k--~o o as n - - ~ .  Q.E.D. 
k~n 
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